data_describe.core.heatmap¶
| 
 | Visualizes data patterns in the entire dataset by visualizing as a heatmap. | 
- 
class data_describe.core.heatmap.HeatmapWidget(input_data=None, colnames=None, std_data=None, missing=False, missing_data=None, **kwargs)¶
- Bases: - data_describe._widget.BaseWidget- Container for data heatmap calculation and visualization. - This class (object) is returned from the - data_heatmapfunction. The attributes documented below can be accessed or extracted.- 
input_data¶
- The input data. 
 - 
colnames¶
- Names of numeric columns. 
 - 
std_data¶
- The transposed, standardized data after scaling. 
 - 
missing¶
- If True, the heatmap shows missing values as indicators instead of standardized values. 
 - 
missing_data¶
- The missing value indicator data. 
 - 
show(self, viz_backend=None, **kwargs)¶
- The default display for this output. - Shows the data heatmap plot. - Parameters
- viz_backend – The visualization backend. 
- **kwargs – Keyword arguments. 
 
- Raises
- ValueError – Computed data is missing. 
- Returns
- The correlation matrix plot. 
 
 
- 
- 
data_describe.core.heatmap.data_heatmap(data, missing=False, compute_backend=None, viz_backend=None, **kwargs) → HeatmapWidget¶
- Visualizes data patterns in the entire dataset by visualizing as a heatmap. - This feature operates in two modes. - (Default): A data heatmap showing standardized values (bounded to [-3, 3]). This visualization is useful for showing unusual, ordered patterns in the data that would otherwise be unnoticeable in summary statistics or distribution plots. - Missing: Visualize only missing values. - Parameters
- data – A pandas data frame 
- missing (bool) – If True, show only missing values 
- compute_backend – The compute backend. 
- viz_backend – The visualization backend. 
- **kwargs – Keyword arguments 
 
- Returns
- The data heatmap.