data_describe.core.distributions¶
| 
 | Distribution Plots. | 
- 
class data_describe.core.distributions.DistributionWidget(input_data=None, spike_value=None, skew_value=None, spike_factor=None, skew_factor=None, viz_backend=None)¶
- Bases: - data_describe._widget.BaseWidget- Container for distributions. - This class (object) is returned from the - distributionfunction. The attributes documented below can be accessed or extracted.- 
input_data¶
- The input data 
 - 
spike_value¶
- Measure of the “spikey”ness metric, which diagnoses spikey histograms where the tallest bin is - ntimes taller than the average bin.
 - 
skew_value¶
- Measure of the skewness metric. 
 - 
spike_factor¶
- The threshold factor used to diagnose “spikey”ness. 
 - 
skew_factor¶
- The threshold factor used to diagnose skew. 
 - 
show(self, viz_backend=None, **kwargs)¶
- The default display for this output. - Displays a summary of diagnostics. - Parameters
- viz_backend (str, optional) – The visualization backend. 
- **kwargs – Keyword arguments. 
 
 
 - 
plot_distribution(self, x: Optional[str] = None, contrast: Optional[str] = None, viz_backend: Optional[str] = None, **kwargs)¶
- Generate distribution plot(s). - Numeric features will be visualized using a histogram/violin plot, and any other types will be visualized using a categorical bar plot. - Parameters
- x (str, optional) – The feature name to plot. If None, will plot all features. 
- contrast (str, optional) – The feature name to compare histograms by contrast. 
- mode (str) – {‘combo’, ‘violin’, ‘hist’} The type of plot to display. Defaults to a combined histogram/violin plot. 
- hist_kwargs (dict, optional) – Keyword args for seaborn.histplot. 
- violin_kwargs (dict, optional) – Keyword args for seaborn.violinplot. 
- viz_backend (optional) – The visualization backend. 
- **kwargs – Additional keyword arguments for the visualization backend. 
 
- Returns
- Histogram plot(s). 
 
 
- 
- 
data_describe.core.distributions.distribution(data, diagnostic=True, compute_backend=None, viz_backend=None, **kwargs) → DistributionWidget¶
- Distribution Plots. - Visualizes univariate distributions. This feature can be used for generating various types of plots for univariate distributions, including: histograms, violin plots, bar (count) plots. - Parameters
- data – Data Frame 
- diagnostic – If True, will run diagnostics to select “interesting” plots. 
- compute_backend – The compute backend. 
- viz_backend – The visualization backend. 
- **kwargs – Keyword arguments. 
 
- Raises
- ValueError – Invalid input data type. 
- Returns
- DistributionWidget