data_describe.core.heatmap¶
|
Visualizes data patterns in the entire dataset by visualizing as a heatmap. |
-
class
data_describe.core.heatmap.
HeatmapWidget
(input_data=None, colnames=None, std_data=None, missing=False, missing_data=None, **kwargs)¶ Bases:
data_describe._widget.BaseWidget
Container for data heatmap calculation and visualization.
This class (object) is returned from the
data_heatmap
function. The attributes documented below can be accessed or extracted.-
input_data
¶ The input data.
-
colnames
¶ Names of numeric columns.
-
std_data
¶ The transposed, standardized data after scaling.
-
missing
¶ If True, the heatmap shows missing values as indicators instead of standardized values.
-
missing_data
¶ The missing value indicator data.
-
show
(self, viz_backend=None, **kwargs)¶ The default display for this output.
Shows the data heatmap plot.
- Parameters
viz_backend – The visualization backend.
**kwargs – Keyword arguments.
- Raises
ValueError – Computed data is missing.
- Returns
The correlation matrix plot.
-
-
data_describe.core.heatmap.
data_heatmap
(data, missing=False, compute_backend=None, viz_backend=None, **kwargs) → HeatmapWidget¶ Visualizes data patterns in the entire dataset by visualizing as a heatmap.
This feature operates in two modes.
(Default): A data heatmap showing standardized values (bounded to [-3, 3]). This visualization is useful for showing unusual, ordered patterns in the data that would otherwise be unnoticeable in summary statistics or distribution plots.
Missing: Visualize only missing values.
- Parameters
data – A pandas data frame
missing (bool) – If True, show only missing values
compute_backend – The compute backend.
viz_backend – The visualization backend.
**kwargs – Keyword arguments
- Returns
The data heatmap.