data_describe.core.time¶
| 
 | Plots time series given a dataframe with datetime index. Statistics are computed using the statsmodels API. | 
| 
 | Perform stationarity tests to see if mean and variance are changing over time. | 
| 
 | Correlation estimate using partial autocorrelation or autocorrelation. | 
| 
 | Compute the Augmented Dickey-Fuller (ADF) test for stationarity. | 
| 
 | Compute the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test for stationarity. | 
| 
 | Generates the figure layout. | 
- 
data_describe.core.time.plot_time_series(df, col, decompose=False, model='additive', compute_backend=None, viz_backend=None, **kwargs)¶
- Plots time series given a dataframe with datetime index. Statistics are computed using the statsmodels API. - Parameters
- df – The dataframe with datetime index 
- col (str or [str]) – Column of interest. Column datatype must be numerical 
- decompose – Set as True to decompose the timeseries with moving average. Defaults to False. 
- model – Specify seasonal component when decompose is True. Defaults to “additive”. 
- compute_backend – Select computing backend. Defaults to None (pandas). 
- viz_backend – Select visualization backend. Defaults to None (seaborn). 
- **kwargs – Keyword arguments 
 
- Raises
- ValueError – Invalid input data type. 
- ValueError – - `col`not a list or string.
 
- Returns
- The visualization 
 
- 
data_describe.core.time.stationarity_test(df, col, test='dickey-fuller', regression='c', compute_backend=None, **kwargs)¶
- Perform stationarity tests to see if mean and variance are changing over time. - Backend uses statsmodel’s statsmodels.tsa.stattools.adfuller or statsmodels.tsa.stattools.kpss - Parameters
- df – The dataframe. Must contain a datetime index 
- col – The feature of interest 
- test – Choice of stationarity test. “kpss” or “dickey-fuller”. Defaults to “dickey-fuller”. 
- regression – Constant and trend order to include in regression. Choose between ‘c’,’ct’,’ctt’, and ‘nc’. Defaults to ‘c’ 
- compute_backend – Select computing backend. Defaults to None (pandas). 
- **kwargs – Keyword arguments 
 
- Raises
- ValueError – Invalid input data type. 
- ValueError – col not found in dataframe. 
 
- Returns
- Pandas dataframe containing the statistics 
 
- 
data_describe.core.time.plot_autocorrelation(df, col, plot_type='acf', n_lags=40, fft=False, compute_backend=None, viz_backend=None, **kwargs)¶
- Correlation estimate using partial autocorrelation or autocorrelation. - Statistics are computed using the statsmodels API. - Parameters
- df – The dataframe with datetime index 
- col – The feature of interest 
- plot_type – Choose between ‘acf’ or ‘pacf. Defaults to “pacf”. 
- n_lags – Number of lags to return autocorrelation for. Defaults to 40. 
- fft – If True, computes ACF via fourier fast transform (FFT). Defaults to False. 
- compute_backend – Select computing backend. Defaults to None (pandas). 
- viz_backend – Select visualization backend. Defaults to None (seaborn). 
- **kwargs – Keyword arguments 
 
- Raises
- ValueError – Invalid input data type. 
- ValueError – col not found in dataframe. 
 
- Returns
- The visualization 
 
- 
data_describe.core.time.adf_test(timeseries, autolag: str = 'AIC', regression: str = 'c', **kwargs)¶
- Compute the Augmented Dickey-Fuller (ADF) test for stationarity. - Backend uses statsmodels.tsa.stattools.adfuller - Parameters
- timeseries – The timeseries 
- autolag – Method to use when determining the number of lags. Defaults to ‘AIC’. Choose between ‘AIC’, ‘BIC’, ‘t-stat’, and None 
- regression – Constant and trend order to include in regression. Choose between ‘c’,’ct’,’ctt’, and ‘nc’ 
- **kwargs – Keyword arguments for adfuller 
 
- Returns
- Pandas dataframe containing the statistics 
 
- 
data_describe.core.time.kpss_test(timeseries, regression: str = 'c', nlags: Optional[int] = None, **kwargs)¶
- Compute the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test for stationarity. - Backend uses statsmodels.tsa.stattools.kpss - Parameters
- timeseries – The timeseries 
- regression – The null hypothesis for the KPSS test. ‘c’ : The data is stationary around a constant (default). ‘ct’ : The data is stationary around a trend. 
- nlags – Indicates the number of lags to be used. Defaults to None. 
- **kwargs – Keyword arguments for kpss 
 
- Returns
- Pandas dataframe containing the statistics 
 
- 
data_describe.core.time.figure_layout(title='Time Series', xlabel='Date', ylabel='Variable')¶
- Generates the figure layout. - Parameters
- title – Title of the plot. Defaults to “Time Series”. 
- xlabel – x-axis label. Defaults to “Date”. 
- ylabel – y-axis label. Defaults to “Variable”. 
 
- Returns
- The plotly layout